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Oriented Eutectic Microstructures in the

SYStem A |203/Z rO,

F. SCHMID, D. VIECHNICKI

Army Materials and Mechanics Research Center, Watertown, Mass, US A

Oriented eutectic microstructures have been produced in the system Al,0,/ZrO, using a
Bridgman-type crystal-growing furnace. Ingots consisted of elongated columnar grains or
culonies. Inside the colonies a rod-type autectic microstructure consisting of rods of
ZrO, surrounded by an Al,O, matrix was observed. The eutectic point was re-established
at 63 mol 9%, Al,0,/37.0 mol % ZrO, and 1870 4+ 5° C. Al,O, is the first phase to nucleate

when eutectic growth occurs.

1. Introduction

Oriented eutectic microstructures have been
produced in systems which suggest potential
applications in many areas of materials tech-
nology. Al/Al;Ni eutectics are of structural in-
terest [1]. NaF/NaCl eutectics exhibit highly
anisotropic optical properties [2]. Eutectic
microstructures in the system BaFe;,0,,/
BaFe,0, are of interest for their magnetic pro-
perties [3]. To date the bulk of the studies on
eutectic solidification have been concerned with
metal systems and alkali halide systems where the
temperatures involved have been relatively low,
i.e. below 1000° C. High melting systems such as
oxides and carbides have not been extensively
investigated, yet these systems may find applica-
tion where strength and hardness are required
at elevated temperatures. The object of this study
was to investigate eutectic solidification in some
high melting oxide systems and to determine
whether oriented eutectic microstructures could
be produced. Viechnicki and Schmid have
studied eutectic solidification in the system
Al,0./Y,Al;0,, [4]. The system Al,0;/ZrO,
was chosen for this study because Al,O; and
ZrQ, have low vapour pressures below 2000° C
[5, 6] and are not easily reduced to sub-oxides
[7, 8]. Studies of phase equilibria in this system
indicated that this was a simple binary system
with no compound formation [9-11]. Since the
position of the eutectic point was not consistent
in these investigations nor was it clearly defined
by v. Wartenberg er a/ [12], its position was
re-investigated.

2. Experimental
2.1, Materials

The starting materials used in this investigation
were alumina* and zirconiat powders. The
alumina powder contained greater than 99.999,
Al,0O,. Typical impurities listed by the producer
were 0.003 %, Na,0, 0.001 % SiO,, 0.001 %, TiO,,
0.001 % Fe,0O,, 0.0019 P,0O;, and 0.001 7%, Cl.
The zirconia powder contained greater than
999% ZrQ, plus HfO,. Maximum specific im-
ourities listed by the producer included 0.18%
Si0,, 0.229, Ca0, 0.15% MgO, 0.10% Fe,0,,
0.16% Al,0,4, and 0.11 9 TiO,. These powders
were weighed in desired proportions, mixed in a
blender for 1 h in acetone, dried and calcined for
more than 72 li at 1200° C. The calcined powders
were then either put directly into a Bridgman
furnace for solidification studies or stored in an
evacuated dessicator.

2.2, Determination of the Eutectic Point
Various compositions in the system Al,0,/ZrC,
were mixed, pressed into small pellets, and
melted in a vacuum graphite resistance furnace.
Pellets were observed while they were being
heated. Temperature was measured with an
optical pyrometer. The temperature at which the
first liquid was observed was taken to be the
eutectic temperature. The eutectic composition
was determined from photomicrographs of the
microstructures of solidified pellets by quantita-
tive metallography. A more complete description
of the furnace and technique has been given
elsewhere [13].

*Gem-242 Ulira High Purily Alumina, Engineering Materials, PO Box 363, New York 8, NY, USA.
t+Zircoa A-H-C, Zirconium Corporation of America, 31501 Solon Rd, Solon 39, Ohio, USA.
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2.3. Direction Solidification

90 g of calcined powder were packed into a
cylindrical vapour-deposited tungsten crucible*
1.3 cm in diameter by 30 cm in fength. This
crucible held enough loose powder to obtain an
ingot 10 cm long after an initial melting at
1900° C. Melting and directional solidification
studies were done in a Bridgman crystal-growing
furnace illustrated schematically in fig. 1. A
helium atmosphere was used throughout this
investigation. Power was supplied by a 450 kHz
20 kW rf generator to a graphite susceptor
2.5 cm in diameter and 15 cm long. Melts for
solidification studies were heated to 2000° C.

Electric Motor —-———J
Rack and Pir.on ———————=d
Serum Cap e

Brass End Plate
“0" Ring —

Auartz Tube —— e

Tungstan Crucible and Tuba —— ==

Graphits Suscaptor ———

Zirconia Castable Insulation

induction Coils

Vacuum Valve
Cold T.2p

Pyrometer

Figure 1 Schermatic of Bridgman type furnace.

Cooling was accomplished by radiation from the
bottom of the sample. After the initial melting
and prior to further solidification studies the
bottom of the tungsten crucible was cut off to
eliminate a reflective interface to increase the
radiation cooling. When the ingot was put into

the furnace, its bottom was positioned to pro-
trude 1.3 cm beiow the bottom of the susceptor.
Thus as the power was incrcased, melting
occurred from the top down to within 2 cm of
the bottom of the ingot.

The position of the lowest liquid-solid inter-
face relative to the bottom of the ingot could
later be measured upon sectioning the ingot.
Directional solidification was then accomplished
by passing the crucible down through the
susceptor at a given rate. Temperatures were
measured from the bottom of the ingot and from
the hot zone of the furnace with an optical pyro-
meter. Appropriate corrcctions were applied to
obtain the actual temperatures in the furnace
[13]). The temperature gradient in the solid
parallel to the growth direction at the start of
directional solidification was determined by
taking the difference between the ter-perature at
the bottom of the ingot and the eutectic tem-
perature and dividing this by the distance
between the bottom of the ingot and the lowest
liquid-solid interface.

2.4. Optical and X-ray Studies

Polished sections were prepared using graded
silicon carbide papers, diamond paste, and
chromic oxide for a final relief polish. Photo-
micrographs were obtained from a Bausch and
Lomb metallograph with a carbon arc light
source. Phases present in the solidified ingots
were determined by X-ray analysis using a
Norelco Diffractometer and CuK« radiation.

3. Results and Discussion
3.1. Determination of the Eutectic Point

The following compositions were heated until a
liquid phase was observed: 64.5 mol %, Al,O,/
35.5 mol % ZrO,, 54.7 mol 9 Al,0,/45.3 mol %,
ZrO,, and 49.7 mol % Al,04/50.3 mol % ZrO,.
Liquid was Fist observed as these compositions
were heated at 1870 4 5° C. This was the
eutectic temperature. These solidified pellets
were mounted, polished, and observed with a
metallograph. The eutectic composition was
determined from the. microstructures. Primary
Al,O4 and a fine rod-type eutectic microstructure
vas seen for the composition 64.5 mol ¢/
Al,0,/35.5 mol ¥, ZrO,. Primary ZrO, and a
fine rod-type eutectic microstructure was sean
for the other compositions. Fig. 2 is a cross-
sectional view of this fine rod-type eutectic
microstructure. ZrO, rods 1 um in diameter are

*San Fernando Laboratories, 10258 Norris St, Pacoima, California, USA.
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Figure 2 Transverse secticn of highly oriented rod-type
eutectic microstructure of 63.0 mol 9, A1,0,/37.0 mol %,
ZrO, composition.

enclosed in an Al,O, matrix. Since these are the
ends of rods, the area fraction of each phase was
readily converted to a volume fraction and then
te a mole fraction taking the density of mono-
clinic ZrO,* to be 5.56 g cm=3 [14]. The volume
fraction, volumezro,/volumea,o, was found to
be 0.506 at the eutectic. The eutectic composi-
tion was thus found to be 63.0 mol 9, Al,0,/37.0
mol %, ZrO,. Subsequent melts of this composi-
tion had only the fine rod-type eutectic micro-
structure and no primary phases.

The primary Al,O, in the microstructure of
the 64.5 mol 9, Al,04/35.5 mol %, ZrO, material
served to nucleate the eutectic microstructure,
whereas the primary ZrO, in the microstructure
of the 54.7 mol Y%, Al,0;3/45.3 mol %, ZrO,
material was surrounded by a ring of Al,O,.
Following from the findings of Sundquist and
Mondolfo [15] in metal systems, it can be said
that Al,Q, is the first phase to nucleate and
causes nucleation of 7rQ, when growth of the
eutectic cceurs.

H. v. Wcartenberg et ai reported a broad
eutectic in the system Al,0./ZrO, at 1920° C
[12]. Suzuki er al reported the eutectic peint at
50 mol ¢, Al,0,/50 mol %, ZrO, and 1890° C.
Cevales reported the eutectic point at 62.0 mol
Al,0,4/38.0 mol 9 ZrO, and 1710 + 10" C [10].
Alper reported the eutectic point at 64.5 mol 9,
Al,0,,35.5 mol %, ZrQ, and 1850 C [11]. The
eutectic composition found in this investigation
compares favourably with those reported by
Cevales and Alper. The eutectic temperature

found in this investigation compares favourably
with those reported by Suzuki er a/ and by Alper.
This may be considered good agreement con-
sidering the variety of methods used and the
high temperatures involved.

3.2. Directional Solidification

Ingots were solidified at various growth rates
between 1.29 cm h~! and 15.56 cm h~'. A typical
ingot is one solidified at 2.59 cm h-!. The tem-
perature gradient at the start of directional
solidification in the solid parallel to the growth
direction was determined to be 220° C cm~'. The
ingot was pore-free and consisted of many
columnar grains or colonies ca. 0.1 mm in dia-
meter and 4 mm in length. The colonies are
evident in figs. 3 and 4. Fig. 3 is a longitudinal
and fig. 4 a transverse section of the ingot.

Figure 3 Longitudinal section of colony structure in an
ingot of eutectic compositior 63.0 mol % Al,0,/37.0 mol
% Z10,.

Within each of the colonies was a fine oriented
rod-type eutectic microstructure. Figs. 5 and 2
are the longitudinal and transverse sections of a
colony. The cuntinuous phase is Al,O3. In each
ingot several colonies were very highly oriented
with very straight rods as sezn in fig. 6. {Polishing
of this secticn was difficult and the pitting seen
in this figure could not be eliminated.) The rods
are | um in diameter and more than 50 pum ir
length.

Impurities have been shown to cause the
colony structure in metal systems [16] and it is
quite probable that they are the cause of the

*X-ray diffraction studies revealed that tiie ZrO, was almost totally in 1he monoclinic modification. A 1race of a peak
was noliced a1 28 == 30.5° which may have corresponded to a cubic (1 1 1) peak. Some smail fraction of the ZrO, may

have been in the cubic modification.
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Figure 4 Transverse section of colony structure in an
ingot of eutectic composition 63.0 mol % Al,0,/37.0 mol
% Z10,.

Figure 5 Longitudinal section of eutectic microstructure
of 63.0 mole % Ai,0,/37.0 mol % ZrO, composition.

Figure 6 Longitudinal section of highly oriented rod-type
eutectic microstructure of 63.0 mol % Al,04/37.0 mol %
ZrO, composition.

colony structure in the Al,04/ZrQ, system, con-
sidering the relatively impure starting materials,
99.999, pure Al,O; and 999, pure ZrQ,. The
high temperatures required for melting probably
caused some contamination from the tungsten
crucibles [4]). Radial temperature gradients and
local temperature gradients caused by the rejec-
tion of impurities ahead of the growing liquid-
solid interface further complicated controlled
growth of these eutectics. Highly oriented
eutectic microstructures are obtainable in the
system Al,O,/ZrO,, but it appears that cleaner
starting materials and higher experimentally
imposed temperature gradients may be necessary
to grow these eutectics in a controlled manner.
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